Jennifer Vandenbussche and Douglas B. West* (west@math.uiuc.edu), Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, IL 61801-2975. Independence number of 2-factor-plus-triangles graphs.
A 2-factor-plus-triangles graph is the union of two 2-regular graphs with the same vertex set, such that one of them consists of disjoint triangles. Let \mathcal{G} be the family of such graphs. These include the famous "cycle-plus-triangles" graphs shown to be 3 -choosable by Fleischner and Stiebitz. The independence ratio of a graph in \mathcal{G} may be less than $1 / 3$; we prove that it is always at least $1 / 4$, with equality only for disjoint unions of copies of one 12 -vertex graph. However, \mathcal{G} contains infinitely many connected graphs with independence ratio less than $4 / 15$. Motivated by a question of Erdős, we also construct graphs in \mathcal{G} with girth 7 and independence ratio less than $1 / 3$, but girth 8 guarantees ratio $1 / 3$. Finally, unions of two 2 -factors consisting of 3 -cycles are 3 -choosable. (Received February 11, 2008)

