1038-05-73

Noga Alon, Jozsef Balogh, Alexandr V. Kostochka and Wojciech Samotij* (samotij2@uiuc.edu). The number of induced subgraphs with distinct size or order. Preliminary report.

A graph is called *trivial* if it is either complete or empty. Ramsey's theorem states that every *n*-vertex graph contains an induced trivial subgraph of order at least $\Omega(\log n)$. We say that an *n*-vertex graph *G* is *c*-Ramsey if it does not contain a trivial induced subgraph of order greater than $c \log n$. Erdős, Faudree and Sós conjectured that every *c*-Ramsey graph with *n* vertices contains $\Omega(n^{5/2})$ induced subgraphs any two of which differ either in the number of vertices or in the number of edges, i.e., the number of distinct pairs (|V(H)|, |E(H)|), as *H* ranges over all induced subgraphs of *G*, is at least $\Omega(n^{5/2})$. Recently Alon and Kostochka proved that the number of distinct pairs is at least $\Omega(n^2)$. In an ongoing work we further improve their bound. (Received January 29, 2008)