1038-94-285 Hai Q. Dinh* (hdinh@kent.edu), Department of Mathematical Sciences, Kent State University, 4314 Mahoning Avenue, Warren, OH 44483. Constacyclic Codes Of Length p^s Over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$. All constacyclic codes of length p^s over the ring $\mathcal{R} = \mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$ are studied. The units of the ring \mathcal{R} are of the forms γ , and $\alpha + u\beta$, where α, β, γ are nonzero elements of \mathbb{F}_{p^m} , which provide $p^m(p^m - 1)$ such constacyclic codes. First, the structure and Hamming distances of all constacyclic codes of length p^s over the finite field \mathbb{F}_{p^m} are obtained, and used as a tool to establish the structure and Hamming distances of all $(\alpha + u\beta)$ -constacyclic codes of length p^s over \mathcal{R} . We then classify all γ -constacyclic codes of length p^s over \mathcal{R} by categorizing them into 4 types: trivial ideals, principal ideals with nonmonic polynomial generators, principal ideals with monic polynomial generators, and nonprincipal ideals; and we give a detailed structure of ideals in each type. Among other results, we are also able to obtain the number of codewords in each γ -constacyclic code. (Received February 12, 2008)