1026-11-146 Nathan Kaplan* (nathank@princeton.edu), 933 President Street, Brooklyn, NY 11215.
Cyclotomic Polynomials of Order Three and Maximal Height of Divisors of $x^{n}-1$.
The nth cyclotomic polynomial, Φ_{n}, is the monic polynomial whose roots are the primitive nth roots of unity. A cyclotomic polynomial has order three if n is the product of three primes, $p<q<r$. Let $A(n)$ be the maximum absolute value of a coefficient of Φ_{n}. The function $A(n)$ has been studied extensively and there are several interesting open questions related to $A(p q r)$. For each pair of primes $p<q$, we will give infinitely many r such that $A(p q r)=1$. We will also discuss new periodicity results for $A(p q r)$.

We will also discuss the problem of determining the largest absolute value of a coefficient of any integer polynomial dividing $x^{n}-1$. We will discuss new explicit results for the cases where n is equal to $p^{2} q, p q^{2}$ or $p q r$. We will also give a new general bound for the size of these coefficients. (Received February 23, 2007)

