1026-12-186Oleg Golubitsky* (oleg.golubitsky@gmail.com), Ontario Research Centre for Computer
Algebra, Department of Computer Science, University of Western Ontario, London, Ontario
N6A5B7, Canada. Canonical representation of radical differential ideals.

For every radical differential ideal, one can compute a decomposition into prime (or characterizable) components, which allows to test ideal membership. This representation of the radical differential ideal is not unique in three respects:

- The components are not unique.
- The representation of each component by a characteristic set is not unique.
- The decomposition and representation of each component depend on the choice of ranking on derivatives.

We will discuss how to make the representation unique, namely:

- A prime decomposition uniquely determined by the radical differential ideal can be computed by extending the algorithm for testing inclusion of quasi-algebraic sets proposed by W. Sit.
- The canonical characteristic set of a prime differential ideal can be obtained by imposing restrictions proposed by F. Boulier et al. We list some of its properties.
- In particular, the canonical characteristic set defines a differential analogue of the Gröbner cone. This will lead us to an algorithm that computes a ranking-independent universal characteristic decomposition of a radical differential ideal.

(Received February 26, 2007)