Thomas W. Cusick, Yuan Li and Pante Stanica* (pstanica@nps.edu), Naval Postgraduate School, Applied Mathematics Department, Monterey, CA 93943. Counting Balanced Polynomials over Finite Fields.
Under mild conditions on n, p, we give a lower bound on the number of n-variable balanced symmetric polynomials over finite fields $G F(p)$, where p is a prime number. The existence of nonlinear balanced symmetric polynomials is an immediate corollary of this bound. Furthermore, we conjecture that $X\left(2^{t}, 2^{t+1} l-1\right)$ are the only nonlinear balanced elementary symmetric polynomials over $G F(2)$, where $X(d, n)=\sum_{i_{1}<i_{2}<\cdots<i_{d}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{d}}$, and we prove various results in support of this conjecture. (Received January 25, 2007)

