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Let X = (X, τ) be a topological vector space and K(X) the family of all nonempty compact convex subsets of X. Endowed

with the Minkowski addition A+B = {a+ b | a ∈ A, b ∈ B } the set K(X) is a commutative semigroup with cancellation

property.

An equivalence relation on K2(X) = K(X) × K(X) is given by (A,B) ∼ (C,D) iff A + D = B + C and an ordering by:

(A,B) ≤ (C,D) iff A ⊂ C and B ⊂ D.

A pair (A,B) ∈ K2(X) is called minimal if there exists no equivalent pair (C,D) with (C,D) < (A,B). In 2-dimensions

equivalent minimal pairs are uniquely determined up to translation. This is not longer true for higher dimensions.

We consider also minimal pairs of closed bounded sets and minimality under constraints. A separation law for compact

convex sets is proved, which is equivalent to the cancellation law.

Within the frame of an ordered commutative semigroup, pairs of compact convex sets correspond to fractions and minimal

pairs to relative prime fractions. (Received December 18, 2006)
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