Peter Brass* (peter@cs.ccny.cuny.edu), City College of New York, Department of Computer Science, 138 Street at Convent Avenue, New York, NY 10463. Distributing an infinite point sequence uniformly in a region.
Given a convex set C, one way to measure how evenly a point set p_{1}, \ldots, p_{n} is distributed in C is the ratio of the inradius $\operatorname{inradius}\left(p_{1}, \ldots, p_{n}\right)=\sup _{q \in C} \inf _{1 \leq i \leq n} d\left(q, p_{i}\right)$ to the minimum distance in the set. It is easy to see that $\frac{\operatorname{inradius}\left(p_{1}, \ldots, p_{n}\right)}{\operatorname{mindist}\left(p_{1}, \ldots, p_{n}\right)} \geq$ $1 / \sqrt{3}$, and sections of the triangular lattice reach that lower bound. In this talk, we look at infinite sequences p_{1}, p_{2}, \ldots such that each beginning part p_{1}, \ldots, p_{n} is well-distributed in this sense. specifically, that $\lim \sup _{n \rightarrow \infty} \frac{\operatorname{inradius}\left(p_{1}, \ldots, p_{n}\right)}{\operatorname{mindist}\left(p_{1}, \ldots, p_{n}\right)}$ is small. If we construct the point set by refining a triangular lattice section, this limsup is 1 , and the same can be reached from any starting set by the process of Voronoi insertion, as observed recently in a paper by Teramoto, Asano, Katoh and Doerr. This suggests the question whether there is any sequence for which the limsup is less than one. We give a lower bound of $1 / \sqrt{2}$. This is related to a property of the minimum angles of the sequence of Delaunay-triangulations of these sets. (Received February 23, 2007)

