Gábor Fejes Tóth* (gfejes@renyi.hu), Rényi Institute, POBox 127, Budapest, 1364, Hungary. The moment theorem for convex sets.
We prove the following
Theorem. Let R be a convex domain and P a set of $n \geq 2$ points in the plane. Let H be a regular hexagon centered at the origin with area $(H)=\operatorname{area}(R) / n$. Then we have for any non-increasing function f defined for non-negative reals

$$
\int_{R} f\left(\min _{p \in P}\|p-x\| d x \leq n \int_{H} f\|x\| d x\right.
$$

For a non-decreasing function f the inequality stands with the reversed sign.
This is a generalization of the "moment theorem" which was proved previously for the case when R is a convex polygon with at most six sides. (Received February 26, 2007)

