Ralph Howard* (howard@math.sc.edu), Department of Mathematics, University of South Carolina, Columbia, SC 29208, Dmitry Ryabogin (ryabs@math.ksu.edu), Mathematics Department, 138 Cardwell Hall, Kansas State University, Manhattan, KS 66506-2602, Anamaria Rusu (rusu@math.sc.edu), Department of Mathematics, University of South Carolina, Columbia, SC 29208, and Artem Zvavitch (zvavitch@math.kent.edu), Department of Mathematical Sciences, Mathematics and Computer Science Building, Summit Street, Kent, OH 44242. Determining Symmetric Convex Bodies by the Perimeters of Their Central Sections.
Let \mathcal{P}_{k}^{n} be the collection of all C^{1} convex bodies K in \mathbf{R}^{n} symmetric about the origin with the property that for all k-dimensional linear subspaces P of $\mathbf{R}^{n} V_{k-1}(P \cap \partial K)=V_{k-1}\left(P \cap \partial \mathbf{B}^{n}\right)$ where \mathbf{B}^{n} is the Euclidean ball. (That is $K \in \mathcal{P}_{k}^{n}$ is a centrally convex body with C^{1} boundary and the property that the ($k-1$)-dimensional "parameter" of $P \cap K$ is the same as that of $P \cap \mathbf{B}^{n}$ for all k-dimensional central sections of K.) We show that in this class the ball is isolated in the sense that all one parameter analytic deformations of the ball in \mathcal{P}_{k}^{n} are constant. This gives evidence to support the conjecture that if K_{1} and K_{2} are two convex bodies symmetric about the origin whose sections by any k-dimensional plane through the origin have equal perimeters, then $K_{1}=K_{2}$, a question posed by Richard Gardner in his book Geometric Tomography in the case $k=2$ and $n=3$. (Received February 16, 2007)

