1026-52-93 Ralph Howard* (howard@math.sc.edu), Department of Mathematics, University of South Carolina, Columbia, SC 29208, Dmitry Ryabogin (ryabs@math.ksu.edu), Mathematics Department, 138 Cardwell Hall, Kansas State University, Manhattan, KS 66506-2602, Anamaria Rusu (rusu@math.sc.edu), Department of Mathematics, University of South Carolina, Columbia, SC 29208, and Artem Zvavitch (zvavitch@math.kent.edu), Department of Mathematical Sciences, Mathematics and Computer Science Building, Summit Street, Kent, OH 44242. Determining Symmetric Convex Bodies by the Perimeters of Their Central Sections.

Let \mathcal{P}_k^n be the collection of all C^1 convex bodies K in \mathbb{R}^n symmetric about the origin with the property that for all k-dimensional linear subspaces P of $\mathbb{R}^n V_{k-1}(P \cap \partial K) = V_{k-1}(P \cap \partial \mathbb{B}^n)$ where \mathbb{B}^n is the Euclidean ball. (That is $K \in \mathcal{P}_k^n$ is a centrally convex body with C^1 boundary and the property that the (k-1)-dimensional "parameter" of $P \cap K$ is the same as that of $P \cap \mathbb{B}^n$ for all k-dimensional central sections of K.) We show that in this class the ball is isolated in the sense that all one parameter analytic deformations of the ball in \mathcal{P}_k^n are constant. This gives evidence to support the conjecture that if K_1 and K_2 are two convex bodies symmetric about the origin whose sections by any k-dimensional plane through the origin have equal perimeters, then $K_1 = K_2$, a question posed by Richard Gardner in his book *Geometric Tomography* in the case k = 2 and n = 3. (Received February 16, 2007)