Jean Bourgain, Van H Vu and Philip Matchett Wood* (matchett@math.rutgers.edu), Department of Mathematics, Hill Center-Busch, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd, Piscataway, NJ 08854. On the singularity probability of discretely random complex matrices.
Let n be a large integer and M_{n} be a random matrix whose entries are independent random variables taking values in the complex numbers. For constants $0<q \leq p<1$ and a constant integer r, we will define a property (p, q)-bounded of exponent r and prove that if the entries of M_{n} satisfy this property, then the probability that M_{n} is singular is at most $\left(p^{1 / r}+o(1)\right)^{n}$. Our work generalizes that of Kahn, Komlós, and Szemerédi and that of Tao and Vu. In the special case where the entries of M_{n} take the values $+1,-1$ each with probability $1 / 2$, our result proves that the probability that M_{n} is singular is at most $\left(\frac{1}{\sqrt{2}}+o(1)\right)^{n}$, improving on the previous best known upper bound of $\left(\frac{3}{4}+o(1)\right)^{n}$ proved by Tao and Vu. We present a few other corollaries of our main result, including proving that the $\left(\frac{1}{\sqrt{2}}+o(1)\right)^{n}$ bound holds for any random complex matrix M_{n} so long as the distribution of each entry is symmetric and a simple uniformity condition is satisfied. We also show that our main result can be extended to the case where M_{n} has $\mathfrak{f} \leq O(\ln n)$ rows containing fixed, non-random entries. (Received August 06, 2007)

