1031-35-79 S. Berhanu* (berhanu@temple.edu). On analyticity of solutions of first order nonlinear pdes. Let $(x,t) \in \mathbb{R}^m \times \mathbb{R}$ and $u \in C^2(\mathbb{R}^m \times \mathbb{R})$. We study the analyticity of solutions u of the nonlinear equation

$$u_t = f(x, t, u, u_x)$$

where $f(x, t, \zeta_0, \zeta)$ is complex-valued, real analytic in all its arguments and holomorphic in (ζ_0, ζ) . We show that if the function u is a C^2 solution, $\sigma \in \operatorname{Char} L^u$ and $\frac{1}{i}\sigma([L^u, \overline{L^u}]) < 0$ or if u is a C^3 solution, $\sigma \in \operatorname{Char} L^u$, $\sigma([L^u, \overline{L^u}]) = 0$, and $\sigma([L^u, [L^u, \overline{L^u}]]) \neq 0$, then $\sigma \notin WF_a u$. Here $WF_a u$ denotes the analytic wave-front set of u and $\operatorname{Char} L^u$ is the characteristic set of the linearized operator

$$L^{u} = \frac{\partial}{\partial t} - \sum_{j=1}^{m} \frac{\partial f}{\partial \zeta_{j}}(x, t, u, u_{x}) \frac{\partial}{\partial x_{j}}.$$

(Received August, 3, 2007)