1031-53-91 Alvaro Pelayo* (apelayo@math.mit.edu), Massachusetts Institute of Technology, Department of Mathematics, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, and Benjamin Schmidt, University of Chicago. Maximal toric packings of symplectic-toric manifolds.
We explain how the set of symplectic-toric ball packings of a symplectic-toric manifold of dimension at least four admits the structure of a convex polytope. Using this we will show that for each $n \geq 2$ and each $\delta \in(0,1)$ there are uncountably many inequivalent $2 n$-dimensional symplectic-toric manifolds with a maximal toric packing of density δ. This result follows from a general analysis of how the densities of maximal packings change while varying a given symplectictoric manifold through a family of symplectic-toric manifolds that are equivariantly diffeomorphic but not equivariantly symplectomorphic. Our theorem is in contrast with a previous result of the presenter: up to equivalence, only $\left(\mathbb{C P}^{1}\right)^{2}$ and $\mathbb{C P}^{2}$ admit density one packings when $n=2$ and only $\mathbb{C P}^{n}$ admits density one packings when $n>2$. (Received August 05, 2007)

