1047-05-126 Jennifer Vandenbussche* (jvandenb@spsu.edu), Southern Polytechnic State University, Department of Mathematics, 1100 S. Marietta Pkwy, Marietta, GA 30060, and Douglas B. West, University of Illinois at Urbana-Champaign. Independence number of 2-factor-plus-triangles graphs.

A 2-factor-plus-triangles graph is the union of two 2-regular graphs G_1 and G_2 with the same vertices, such that G_2 consists of disjoint triangles. Let \mathcal{G} be the family of such graphs. These include the famous "cycle-plus-triangles" graphs shown to be 3-choosable by Fleischner and Stiebitz. In this talk, we explore the independence ratio of graphs in \mathcal{G} . The independence ratio of a graph in \mathcal{G} may be less than 1/3, but achieving the minimum value 1/4 requires each component to be isomorphic to a single 12-vertex graph. We present constructions to show that (1) \mathcal{G} contains infinitely many connected graphs with independence ratio less than 4/15; and (2) for each odd g there are infinitely many connected graphs in \mathcal{G} such that G_1 has girth g and the independence ratio of G is less than 1/3. (Received January 23, 2009)