graphs.
A 2-factor-plus-triangles graph is the union of two 2-regular graphs G_{1} and G_{2} with the same vertices, such that G_{2} consists of disjoint triangles. Let \mathcal{G} be the family of such graphs. These include the famous "cycle-plus-triangles" graphs shown to be 3 -choosable by Fleischner and Stiebitz. In this talk, we explore the independence ratio of graphs in \mathcal{G}. The independence ratio of a graph in \mathcal{G} may be less than $1 / 3$, but achieving the minimum value $1 / 4$ requires each component to be isomorphic to a single 12 -vertex graph. We present constructions to show that (1) \mathcal{G} contains infinitely many connected graphs with independence ratio less than $4 / 15$; and (2) for each odd g there are infinitely many connected graphs in \mathcal{G} such that G_{1} has girth g and the independence ratio of G is less than $1 / 3$. (Received January 23, 2009)

