1047-11-11 Greg Martin* (gerg@math.ubc.ca), Dept. of Mathematics, UBC, Room 121, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada. Dense Egyptian fractions.
An Egyptian fraction is a sum of reciprocals of distinct positive integers. How many terms can we have in an Egyptian fraction that sums to 1 , for example, if we limit the size of the denominators? It can be shown that the number of terms can be extremely large; in fact, we will see the best possible result about the density of the set of denominators. Consider also the following problems posed by Erdős and Graham: the set of integers that cannot be the largest denominator of an Egyptian fraction representation of 1 is infinite - what is its order of growth? How about those integers that cannot be the second-largest (third-largest, etc.) denominator of such a representation? We will see the answers to these questions as well, including the one theorem I have ever proved that I think would have surprised Paul Erdős. All these results extend to representations of any positive rational number in place of 1. (Received October 24, 2008)

