1047-11-285 Michael J. Mossinghoff* (mimossinghoff@davidson.edu), Department of Mathematics, University of South Carolina, Columbia, SC 29208. Wieferich pairs and Barker sequences.
A Barker sequence is a finite sequence of integers $\left\{a_{i}\right\}$, each ± 1, for which every sum $\sum_{i} a_{i} a_{i+k}$ with $k \neq 0$ is -1 , 0 , or 1. It is unknown if any Barker sequences exist with length $n>13$, although a number of necessary conditions on their existence have been established, so restrictive in fact that no value of $n>13$ was even known that satisfied all of the requirements. We describe a large computational investigation that significantly improves the best known lower bound on the length of a long Barker sequence. The computation involves a large search for Wieferich prime pairs (q, p), which are defined by the property that $q^{p-1} \equiv 1 \bmod p^{2}$. We also describe some connections between these quantities and some problems of Erdős in number theory and analysis. (Received January 30, 2009)

