1047-11-367 Ognian Trifonov* (trifonov@math.sc.edu), Department of Mathematics, LeConte College, 1523 Greene Street, University of South Carolina, Columbia, SC 29208. Lattice Points Close to a Smooth Curve and Applications.
We review the recent progress on estimating the number of lattice points close to a smooth curve and present two new applications.
(I) We show that there exists an absolute constant $C>0$ such that for every positive integer n, there exist a prime $p<C n^{1 / 5}(\log n)^{2}$ such that $n+p$ is a squarefree number (joint work with M. Filaseta and S. Graham).
(II) J.-P. Serre has shown that the largest possible number of \mathbb{F}_{q} rational points on curves of small genus over a finite field \mathbb{F}_{q} of q elements depends on the property $p \mid\left[2 q^{1 / 2}\right]$, where p is the characteristic of \mathbb{F}_{q}. Recently, F. Luca and I. Shparlinski obtained upper bound on the number of $q \leq Q$ which satisfy the above condition. We improve the Luca-Shparlinski bound (joint work with D. Baczkowski). (Received February 02, 2009)

