1047-11-6 Hung-ping Tsao* (hptsao@hotmail.com), 1151 Highland Drive, Novato, CA 94949. Powered sum formulas via term-wise integrations: a geometric point of view.
We shall apply the established method for the natural sequence to more general cases such as $\mathrm{S}(2 \mathrm{n}-1 ; \mathrm{k})$, the k-powered sum of $1,2,4,5,7,8, \ldots, 3 n-2$ and $S(2 n ; k)$, the k-powered sum of $1,2,4,5,7,8, \ldots, 3 n-2,3 n-1$, where $S(2 n-1 ; 1)=[3,-3,1]$, the quadratic polynomial with coeffcients $3,-3,1$ and $S(2 n ; 1)=[3,0,0]$. Let $\mathrm{I}(\mathrm{S}(2 \mathrm{n}-1 ; \mathrm{k}))$ and $\mathrm{I}(\mathrm{S}(2 \mathrm{n} ; \mathrm{k}))$ be the integrals of $\mathrm{S}(2 \mathrm{n}-1 ; \mathrm{k})$ and $S(2 n ; k)$ with respect to n, respectively. Then we can use mathematical induction to prove that $S(2 n-1 ; 2)=6 \mathrm{I}(\mathrm{S}(2 \mathrm{n}-$ $1 ; 1)+\mathrm{cn}+\mathrm{d}$ and $\mathrm{S}(2 \mathrm{n} ; 2)=6 \mathrm{I}(\mathrm{S}(2 \mathrm{n} ; 1))+\mathrm{cn}(\mathrm{d}=0$, in the case that the 1-powered sum is a quadratic polynomial without constant term), where c and d can be determined by taking different values of n . Thus we can obtain $\mathrm{S}(2 \mathrm{n}-1 ; 2)=[6,-$ $9,6+\mathrm{c}, \mathrm{d}]$, where c and d can be determined by solving $1=6-9+6+\mathrm{c}+\mathrm{d}$ and $1+4+16=48-36+12+2 \mathrm{c}+\mathrm{d}$ so that $\mathrm{S}(2 \mathrm{n}-$ $1 ; 2)=[6,-9,5,-1]$. Likewise, $\mathrm{S}(2 \mathrm{n} ; 2)=[6.0 .-1,0]$. We can then obtain $\mathrm{S}(2 \mathrm{n}-1 ; 3)=9 \mathrm{I}(\mathrm{S}(2 \mathrm{n}-1 ; 2))+[\mathrm{c}, \mathrm{d}]=[13.5,-27,22.5,-9,1]$ and $\mathrm{S}(2 \mathrm{n} ; 3)=9 \mathrm{I}(\mathrm{S}(2 \mathrm{n} ; 2))+[\mathrm{c}, 0]=[13.5,0,-4.5,0,0]$. The most general sequences that this method can be applied to is when the sum of the first an +b terms of which is a quadratic polynomial, because it is equivalent to term-wise integrations justifiable by the fact that the volume of a k dimensional cube is the integral of its surface area with respect to the side. (Received September 19, 2008)

