1047-14-246 Carla Fidalgo* (cfidalgo@isec.pt), Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal, Coimbra, Portugal, and Alexander Kovacec (kovacec@mat.uc.pt), P-3001-454 Coimbra, Coimbra, Portugal. Diagonal minus tail forms and Lasserre's sufficient conditions for sums of squares.
By a diagonal minus tail form (of even degree) we understand a real homogeneous polynomial $F\left(x_{1}, \ldots, x_{n}\right)=F(\underline{x})=$ $D(\underline{x})-T(\underline{x})$, where the diagonal part $D(\underline{x})$ is a sum of terms of the form $b_{i} x_{i}^{2 d}$ with all $b_{i} \geq 0$ and the tail $T(\underline{x})$ a sum of terms $a_{i_{1} i_{2} \ldots i_{n}} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}$ with $a_{i_{1} i_{2} \ldots i_{n}}>0$ and at least two $i_{\nu} \geq 1$. We show that an arbitrary change of the signs of the tail terms of a positive semidefinite diagonal minus tail form will result in a sum of squares (sos) of polynomials. The work uses Reznick's theory of agiforms [Re] and gives easily tested sufficient conditions for a form to be sos; one of these is piecewise linear in the coefficients of a polynomial and reminiscent of Lassere's recent conditions [La] but proved in completely a different manner.
[La] J. B. Lasserre, Sufficient conditions for a polynomial to be a sum of squares, Arch. Math. 89, 390-398 (2007).
[Re] B. Reznick, Forms derived from the arithmetic geometric inequality, Math. Ann. 283, 431-464, (1989). (Received January 29, 2009)

