1047-14-381 Mari F. Castle* (mfc7379@kennesaw.edu), 1000 Chastain Road, \#1204, Kennesaw, GA 30144-5591, Victoria Powers (vicki@mathcs.emory.edu), 400 Dowman Dr., W401, Atlanta, GA 30322, and Bruce Reznick (reznick@math. uiuc.edu), 1409 W. Green Street, Urbana, IL 61801-2975. Pólya's Theorem with Zeros.
Let $\mathbb{R}[X]=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ and let Δ_{n} denote the standard n-simplex $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{i} \geq 0, \sum_{i} x_{i}=1\right\}$. Pólya's Theorem says that if a form (homogeneous polynomial) $p \in \mathbb{R}[X]$ is positive on Δ_{n}, then for sufficiently large $N \in \mathbb{N}$, the coefficients of $\left(X_{1}+\cdots+X_{n}\right)^{N} p$ are positive. In this talk, we discuss a generalization of Pólya's Theorem to form which are allowed to have zeros in the simplex. We give a characterization of forms which satisfy the conclusion of Pólya's Theorem (with "positive coefficients" replaced by "nonnegative coefficients") and give a bound for the N needed. (Received February 02, 2009)

