1047-30-137 **David H Hamilton*** (davidhhamilton@mac.com), 1077 30th ST NW Apt 503, Washington, DC 20007. Julia (Limit) Sets in Curves.

J is Julia (or Limit L_G) Set contained in a Jordan curve Γ . By Hamilton (or Bowen) $ifJ = \Gamma$ and $\dim(\Gamma) \leq 1$ then Γ is a circle/line (O). However if $J \subsetneq \Gamma$ then this can fail (Hamilton), indeed for rectifiable Γ . Never the less Eremenko et al show (O) if Γ is smooth. We improve this to Zygmund smooth. Furthermore if Γ is invariant than NOT (O) implies there is E with $\dim(E) > 0$ on which Γ is not Zymund Smooth. (Similarly for quasifushsian groups). (Received January 25, 2009)