1047-35-136Juan J Manfredi* (manfredi@pitt.edu), 140 Thackeray Hall, 139 University Drive, Pittsbugh,
PA 15260, and Mikko Parviainen and Julio D Rossi. An Asymptotic Mean Value
Characterization for p-harmonic functions.

We characterize *p*-harmonic functions in terms of an asymptotic mean value property. A *p*-harmonic function *u* is a viscosity solution to $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u) = 0$ with $1 in a domain <math>\Omega$ if and only if the expansion

$$u(x) = \frac{\alpha}{2} \left\{ \max_{\overline{B_{\varepsilon}(x)}} u + \min_{\overline{B_{\varepsilon}(x)}} u \right\} + \frac{\beta}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x)} u \, dy + o(\varepsilon^2)$$

holds as $\varepsilon \to 0$ for $x \in \Omega$ holds in a weak sense, which we call viscosity sense. Here the coefficients α, β are determined by $\alpha + \beta = 1$ and $\alpha/\beta = (p-2)/(N+2)$. (Received January 25, 2009)