1047-41-38 Kwang C. Shin* (kshin@westga.edu), Department of Mathematics, University of West Georgia, Carrollton, GA 30118. Asymptotic distribution of eigenvalues of non-self-adjoint Schrödinger operators with polynomial potentials. Preliminary report.
For integers $m \geq 3$, the Schrödinger eigenvalue problem

$$
-y^{\prime \prime}+\left(x^{m}+P(x)\right) y=\lambda y, \quad x \geq 0
$$

under the boundary conditions at $\alpha y(0)+\beta y^{\prime}(0)=0$ and $y(+\infty)=0$ will be studied, where $P$ is a polynomial of degree $\leq m-1$. It is known that the eigenvalues are the zeros of an entire function of order $\frac{1}{2}+\frac{1}{m}$.

In this talk, we present results on direct and inverse spectral problems. In particular, we will talk about asymptotics of the eigenvalues and some effect of the boundary condition at $x=0$ on the asymptotics. Also, we will mention some inverse spectral results, recovering the polynomial potential from the first few terms of the asymptotics of the eigenvalues. (Received December 09, 2008)

