1047-47-427 Raúl E Curto* (rcurto@math.uiowa.edu), Department of Mathematics, University of Iowa, Iowa City, IA 52242. Cubic Column Relations in Truncated Moment Problems. Preliminary report. For a degree $2 n$ real d-dimensional multisequence $\beta \equiv \beta^{(2 n)}=\left\{\beta_{i}\right\}_{i \in Z_{+}^{d}, i \mid \leq 2 n}$ to have a representing measure μ, it is necessary for the associated moment matrix $M(n)$ to be positive semidefinite, and for the algebraic variety associated to β, V_{β}, to satisfy rank $M(n) \leq \operatorname{card} V_{\beta}$ as well as the following consistency condition: if a polynomial $p(x) \equiv \sum_{|i| \leq 2 n} a_{i} x^{i}$ vanishes on V_{β}, then $p(\beta):=\sum_{i i \leq 2 n} a_{i} \beta_{i}=0$. In previous joint work with L. Fialkow and M. Möller, we proved that for the extremal case ($\operatorname{rank} M(n)=\operatorname{card} V_{\beta}$), positivity and consistency are sufficient for the existence of a (unique, rank $M(n)$-atomic) representing measure.

In recent joint work with Seonguk Yoo we consider cubic column relations in $M(3)$ of the form (in complex notation) $Z^{3}=i t Z+u \bar{Z}$, where u and t are real numbers. For (u, t) in the interior of a real cone, we prove that the algebraic variety consists of exactly 7 points, and we then apply the above mentioned solution of the extremal moment problem to obtain a necessary and sufficient condition for the existence of a representing measure. (Received February 03, 2009)

