generation Stirling numbers.
For a sequence Q in a commutative ring, we define the Stirling number $\mathrm{s}(\mathrm{n}, \mathrm{k} ; \mathrm{Q})$ of the first kind with respect to Q as the sum of products of k numbers among the first n terms of Q with $s(n, 0 ; Q)=1$ and the Stirling number $S(n, k ; Q)$ of the second kind with respect to Q to be $\mathrm{S}(\mathrm{n}, \mathrm{k} ; \mathrm{Q})=\mathrm{s}(\mathrm{n}-\mathrm{k}+1,1 ; \mathrm{Q}) \mathrm{S}(\mathrm{n}, \mathrm{k}-1 ; \mathrm{Q})-\mathrm{s}(\mathrm{n}-\mathrm{k}+2,2 ; \mathrm{Q}) \mathrm{S}(\mathrm{n}, \mathrm{k}-2 ; \mathrm{Q})+\ldots$ with the last term being $\mathrm{s}(\mathrm{n}, \mathrm{n} ; \mathrm{Q})$ for odd k and $-\mathrm{s}(\mathrm{n}, \mathrm{n} ; \mathrm{Q})$ for even k and $\mathrm{S}(\mathrm{n}, 0 ; \mathrm{Q})=1$. We shall only consider $\mathrm{s}(\mathrm{n}, \mathrm{k} ; \mathrm{a}, \mathrm{d})$ and $\mathrm{S}(\mathrm{n}, \mathrm{k} ; \mathrm{a}, \mathrm{d})$ with respect to an arithmetic progression $(a+(n-1) d)$. Based on $s(n, k ; a, d)=s(n-1, k ; a, d)+[a+(n-1) d] s(n-1, k-1 ; a, d)$ and $S(n, k ; a, d)=S(n-1, k ; a, d)+[a+(n-k) d] S(n-1, k-1 ; a, d)$, we shall express Stirling numbers as linear combinations of binomial coefficients. The triangular arrays of coefficients in such linear combinations will be called second generation Stirling numbers. For example, $\mathrm{s}(\mathrm{n}, 1 ; \mathrm{a}, \mathrm{d})=\mathrm{S}(\mathrm{n}, 1 ; \mathrm{a} ; \mathrm{d})=\mathrm{dC}(\mathrm{n}, 2)+\mathrm{aC}(\mathrm{n}, 1), \mathrm{s}(\mathrm{n}, 2 ; \mathrm{a}, \mathrm{d})=3 \mathrm{ddC}(\mathrm{n}+2,4)+\mathrm{d}(3 \mathrm{a}-4 \mathrm{~d}) \mathrm{C}(\mathrm{n}+1,3)+(\mathrm{a}-\mathrm{d})(\mathrm{a}-$ d) $C(n, 2)$ and $S(n, 2 ; a, d)=3 d d C(n+1,4)+d(3 a-2 d) C(n+1,3)+(a-d)(a-2 d) C(n, 2)$. We shall derive recursive formulas which will enable us to generate the second generation Stirling numbers of both kinds. They are the same except for the sign only when $\mathrm{a}=\mathrm{d}=1$. (Received March 03, 2009)

