Britney Hopkins* (bhopkins3@uco.edu), University of Central Oklahoma, Department of Mathematics and Statistics, 100 N. University Dr., Edmond, OK 73034. Multiplicity of Positive Solutions for a Fourth-order Nonhomogeneous Boundary Value Problem.
In this talk, we focus on the existence of multiple positive solutions for the fourth order difference equation, $\Delta^{4} u(t-2)=$ $\lambda h\left(t, u(t), \Delta^{2} u(t-1)\right), t \in(0, N+2)_{\mathbb{Z}}$ satisfying the boundary conditions, $u(0)=0, \Delta^{2} u(-1)=0, u(N+2)=a$, and $\Delta^{2} u(N+1)=-b$, where $a, b, \lambda \geq 0, a+b>0$, and $h:[0, N+2]_{\mathbb{Z}} \times[0, \infty) \times(-\infty, 0] \rightarrow[0, \infty)$. We transform the even order boundary value problem into a system of second order difference equations satisfying homogeneous boundary conditions. Then, by applying the Guo-Krasnosel'skii Fixed Point Theorem several times, we show the existence of multiple positive solutions. (Received August 23, 2009)

