1051-53-123 Thalia D. Jeffres* (jeffres@math.wichita.edu), 1845 Fairmount, Wichita, KS 67260, and Julie M. Rowlett (rowlett@math.uni-bonn.de), Villa Maria Endenicher Allee 62, D-53115 Bonn, Germany. Conformal Deformations of Singular Metrics To Constant Scalar Curvature: The Negative Curvature Case. Preliminary report.

Julie Rowlett and I studied a version of the Yamabe problem for certain incomplete metrics of negative scalar curvature, in the complement of a submanifold Λ of a compact manifold X. These metrics g have conical singularities near zerodimensional components of Λ , and near higher-dimensional components the space together with the metric resembles a product of a cone with a smooth, compact manifold.

We showed that if (X, g) is such a singular space, with scalar curvature S(g) < 0, then g can be deformed within the same singularity type to a new metric $\tilde{g} = u^{4/(n-2)}g$ having $S(\tilde{g}) \equiv -1$ if and only if the restriction of the original metric g to the link of the cone has scalar curvature identically equal to m(m-1), where m is the dimension of the link. This condition can be interpreted as a restriction on the cone angle. (Received August 21, 2009)