1051-53-58 **Taechang Byun*** (tcbyun@math.ou.edu), Department of Mathematics, University of Oklahoma, Norman, OK 73019. *Horizontal displacement of curves in bundle* $SO(3) \rightarrow SO_0(1,3) \rightarrow \mathbb{H}^3$. Preliminary report.

Consider the principal bundle $SO(n) \longrightarrow SO_0(1, n) \xrightarrow{\pi} \mathbb{H}^n$, where π is a Riemannian submersion. Let γ be a simple closed curve in the base \mathbb{H}^n , bounding an embedded disk S. We are concerned with the horizontal lift of γ starting at $e \in SO(n)$. The horizontal displacement for γ gives rise to a point p in the fiber SO(n).

When n = 2, it was known that the distance between e and $p \in SO(2)$ is the same as the area of the S. We study the case when n = 3. The surface S enables us to find a curve f connecting e and p in SO(3), whose length is exactly the area of the surface S. In addition, on a dense subset of the domain of f, the left translations of the tangent vectors $\dot{f}(t)$ to e will be related to the curvature of the connection of the principal bundle $SO(1,3) \to \mathbb{H}^3$ with respect to the 2-dimensional horizontal distribution in SO(1,3), induced from the tangent planes of S in \mathbb{H}^3 . (Received August 10, 2009)