Krystyna M Kuperberg* (kuperkm@auburn.edu), Department of Mathematics and Statistics, 221 Parker Hall, Auburn, AL 36849. Periodic points near an adding machine. Preliminary report. Let \mathbf{C} be the Cantor set $\Pi_{n=1}^{\infty} \mathbb{Z} / k_{n} \mathbb{Z}$ associated with the sequence of integers $\left(k_{1}, k_{2}, k_{3}, \ldots\right)$, each greater than one. An adding machine is a homeomorphism $\alpha: \mathbf{C} \rightarrow \mathbf{C}$ such that if $\alpha\left(i_{1}, i_{2}, i_{3}, \ldots\right)=\left(j_{1}, j_{2}, j_{3}, \ldots\right)$, then

1. if for $m \geq 1, i_{n}=k_{n}-1$ for $n<m$ and $i_{m}<k_{m}-1$, then $j_{n}=0$ for $n<m, j_{m}=i_{m}+1$, and $j_{n}=i_{n}$ for $n>m$,
2. if $i_{m}=k_{m}-1$ for all $m \geq 1$, then $j_{m}=0$ for all $m \geq 1$.

Assume that \mathbf{C} is a subset of the plane \mathbb{R}^{2} and let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a homeomorphism such that h restricted to \mathbf{C} is an adding machine. We investigate the existence of points close to \mathbf{C} that are periodic under h. (Received August 16, 2009)

