Ji-A Yeum* (yeum@math.ohio-state.edu), Ohio State University, Department of mathematics, 231 W 18th Avenue, Columbus, OH 43210. Probability of solvability of random systems of 2-linear equations over $G F(2)$.
We consider the random system of 2-linear equations over the finite field $G F(2)$ whose left hand side corresponds to the random graph $G(n, p)$ and whose right hand side consists of independent Bernoulli random variables with success probability $1 / 2$, assuming that the right hand side is independent of the left hand side.
$G(n, p)$ is the random graph with n labeled vertices such that each of the $\binom{n}{2}$ possible edges is present in the graph independently of all others, with probability p.
We prove that when $G(n, p)$ is at the subcritical phase and $|\lambda| \gg n^{1 / 39},|\lambda|=O\left(n^{1 / 12-\epsilon}\right)$ with a fixed $0<\epsilon<1 / 12-1 / 39$, the probability of solvability of the random system corresponding to $G(n, p)$ is asymptotic to $e^{3 / 8}|\lambda|^{1 / 4} n^{-1 / 12}$ as $n \rightarrow \infty$. Also, we prove that when $G(n, p)$ is at the critical phase, the probability of solvability of the random system corresponding to $G(n, p)$ is asymptotic to $c_{\lambda} n^{-1 / 12}$ as $n \rightarrow \infty$, where the constant c_{λ} is expressed as a convergent double series depending on λ. (Received January 05, 2009)

