Stephen S. Graves (sgraves@syr.edu), Syracuse University, Mathematics Department, 215 Carnegie, Syracuse, NY 13244-1150, and Mark E. Watkins* (mewatkin@syr.edu), Syracuse University, Mathematics Department, 215 Carnegie, Syracuse, NY 13244-1150. Growth of Homogeneous Planar Tessellations.
A (planar) tessellation T is an embedding in the plane without accumulation points of a 3-connected, one-ended, locally finite simple graph. With a single vertex or face as the root (0th corona), each (new) face in the ($n+1$)st corona shares a common incident vertex with a face in the nth corona. Let f_{n} denote the number of faces in the nth corona of T, and define $\varphi_{T}(z)=\sum_{n=0}^{\infty} f_{n} z^{n}$. Define growth rate $\gamma(T)$ to be the reciprocal of the radius of convergence of $\varphi_{T}(z)$. This generalizes J. Moran's definition of growth rate as $\lim _{n \rightarrow \infty}\left[\sum_{k=0}^{n+1} f_{k} / \sum_{k=0}^{n} f_{k}\right]$, which sometimes does not exist.

For normal tessellations T in the Euclidean plane, $\gamma(T)=1$. They grow quadratically, while in the hyperbolic plane, $\gamma(T)>1$ and growth is exponential. As every growth rate >1 is realizable by some hyperbolic tessellation, it is more interesting to investigate those having edge-, vertex-, or face-homogeneity, where accretion rules make possible exact computation of $\gamma(T)$. These growth rates are bounded away from 1, and minimum values are found in all cases. In the case of edge-homogeneity, the authors' work is joint with T. Pisanski. (Received February 25, 2009)

