Michael P. Knapp* (mpknapp@loyola.edu), Loyola College, 4501 North Charles Street, Baltimore, MD 21210-2699. Simultaneous diagonal equations of odd degrees. Preliminary report.
In this talk, we will consider a system of two diagonal equations

$$
\begin{array}{r}
a_{1} x_{1}^{k}+\cdots+a_{s} x_{s}^{k}=0 \\
b_{1} x_{1}^{n}+\cdots+b_{s} x_{s}^{n}=0
\end{array}
$$

where the coefficients are ordinary integers and the degrees k and n are odd. We will show that if $\{k, n\} \neq\{5,3\}$ and the number of variables is at least $k^{2}+n^{2}+1$, then this system must have a nontrivial solution in p-adic integers for every prime p. (Received January 06, 2009)

