1050-53-23

Andrew Cotton-Clay* (acotton@math.berkeley.edu), Department of Mathematics, Room 2-314, M.I.T., 77 Massachusetts Ave., Cambridge, MA 02139. Symplectic Floer homology of area-preserving surface diffeomorphisms and sharp fixed point bounds.

The symplectic Floer homology $HF_*(\phi)$ of a symplectomorphism ϕ encodes data about the fixed points of ϕ using counts of holomorphic cylinders in $\mathbb{R} \times M_{\phi}$, where M_{ϕ} is the mapping torus of ϕ . We give an algorithm to compute $HF_*(\phi)$ for ϕ a surface symplectomorphism in a pseudo-Anosov or reducible mapping class, completing the computation of Seidel's $HF_*(h)$ for h any orientation-preserving mapping class. We also show that the rank of a certain twisted version of symplectic Floer homology gives a bound on the number of fixed points of any map with nondegenerate fixed points in a given symplectic mapping class on a monotone symplectic manifold. By calculating this twisted version for surfaces we obtain a sharp lower bound on the number of fixed points of an area-preserving map (with nondegenerate fixed points) in any prescribed mapping class, generalizing the Poincaré-Birkhoff fixed point theorem. (Received January 06, 2009)