For q a power of a prime, consider the ring $\mathbb{F}_q[T]$. Due to the many similarities between $\mathbb{F}_q[T]$ and the ring of integers \mathbb{Z}, we can define for $\mathbb{F}_q[T]$ objects that are analogous to elliptic curves, modular forms, and modular curves. In particular, for \mathfrak{p} a prime ideal in $\mathbb{F}_q[T]$, we can define the modular curve $X_0(\mathfrak{p})$, and study the reduction modulo \mathfrak{p} of its Weierstrass points, as is done in the classical case by Rohrlich, and Ahlgren and Ono. In this talk we construct a Drinfeld modular form for $\Gamma_0(\mathfrak{p})$ whose divisor is supported at the Weierstrass points of $X_0(\mathfrak{p})$, and some partial results on the reduction modulo \mathfrak{p} of this divisor are obtained. (Received December 13, 2011)