Let $G = U(2m, \mathbb{F}_q)$ be the finite unitary group defined over a finite field of order q, where q is the power of an odd prime p. We prove that the number of irreducible complex characters of G with degree coprime to p, and with Frobenius-Schur indicator -1, is equal to q^{m-1}. In particular, we find a (non-canonical) bijection between these irreducible characters and the set of self-dual polynomials of degree $2m$ over \mathbb{F}_q with constant term -1. (Received December 07, 2011)