It follows from work of Bavard that $\text{scl}(A) \geq \frac{\text{rot}(A)}{2}$ for any element A of the modular group $\text{PSL}(2, \mathbb{Z})$, where scl denotes stable commutator length and rot denotes the rotation quasimorphism. Sometimes this bound is sharp, and sometimes it is not. We study which elements $A \in \text{PSL}(2, \mathbb{Z})$ have the property that $\text{scl}(A) = \frac{\text{rot}(A)}{2}$. First we describe some experimental results based on computation of stable commutator length. Then we discuss the following stability theorem: for any element of the modular group, the product of this element with a sufficiently large power of a parabolic element is an element that satisfies $\text{scl} = \frac{\text{rot}}{2}$. This result is joint work with Danny Calegari. (Received December 12, 2011)