
Given a finite dimensional vector space Z of holomorphic functions on an open subset $U \subset \mathbb{C}^n$, we define a projector from the algebra O_b of holomorphic functions at $b \in U$ onto the space $Z_b \subset O_b$ of germs of elements of Z at b. First we prove that Z_b has a structure of factor algebra of O_b at a general point b. Using this projector, we define the Taylor expansion of order d for the functions on an embedded submanifold $X \subset \mathbb{C}^m$ at a general point. These generalise the results of Bos and Calvi on an plane algebraic curve. To show this, we need a special kind of higher order tangent space of X. The growth of this space with respect to the order measures local simplicity of the embedding. We obtain a zero-estimate formula for analytic functions. This implies that X is embedded in \mathbb{C}^m in not highly transcendental manner excepting points of a set of Lebesgue measure 0 in X.

(Received December 01, 2011)