We studied equilibrium conformations of linear and trivial-ring polymers in dilute solutions over the wide range of segment number N of up to 2048 with Monte-Carlo simulation, and N dependence of the radii of gyration, R_g, of chains were obtained. The polymer molecules were assumed to be composed of beads and bonds, and they were put in a face-centered cubic (FCC) lattice. The values of Flory’s critical exponent, ν, for linear and trivial-ring polymers were estimated from the N dependence of R_g, and the temperatures at which ν values reach 1/2 were obtained. Here we define those are Θ-temperatures in this report. The simulation result shows that the Θ-temperature for trivial-ring polymers is evidently lower than that of the linear polymers. Since R_g of a trivial-ring polymer is smaller than that for a linear polymer at the same N and temperature, the segment density for a trivial-ring polymer is increased by the topological effect and the repulsive force between segments of a trivial-ring polymer at the Θ-temperature for a linear polymer is stronger. Thus, the origin of the Θ-temperature depression for trivial-ring polymers is the repulsive force emphasized by the topological effect of rings. (Received November 25, 2011)