Jeremy F Alm* (alm.academic@gmail.com), 1101 W. College Ave., 821 W. Douglas, Jacksonville, IL 62650. An infinite cardinal version of Gallai's Theorem for colorings of \mathbb{R}^n . Two central results in Euclidean Ramsey Theory, both of which go by the name "Gallai's Theorem", are as follows:

Gallai's Theorem on \mathbb{Z}^n : Let S be a finite subset of \mathbb{Z}^n . Then any finite coloring of \mathbb{Z}^n contains a monochromatic subset homothetic to S.

Gallai's Theorem on \mathbb{R}^n : Let S be any finite subset of \mathbb{R}^n . Then any finite coloring of \mathbb{R}^n contains a monochromatic subset homothetic to S.

In this talk we discuss the following strengthening of Gallai's result:

Let $n, k \in \mathbb{Z}^+$, with n > k. Let \mathcal{S} be an n-element subset of \mathbb{R}^k , whose points are not all contained in any (k-1)-dimensional hyperplane. If the points of \mathbb{R}^k are colored in finitely many colors, then there exist 2^{\aleph_0} monochromatic subsets homothetic to \mathcal{S} .

We will briefly sketch the proof, which uses Gallai's Theorem on \mathbb{Z}^n along with a partition of Euclidean Space. (Received March 02, 2013)