1088-03-81Antonio Montalbán and Richard A. Shore* (shore@math.cornell.edu), Department of
Mathematics, Malott Hall, Cornell University, Ithaca, NY 14853. The Limits of Determinacy in
Second Order Arithmetic: Consistency and Complexity Strength. Preliminary report.

We study the consistency and reverse mathematical strength of low levels of determinacy axioms. We derive our results by a recursion/complexity theoretic analysis.

Determinacy for all Boolean combinations of $F_{\sigma\delta}$ (Π_3^0) sets implies the consistency of second-order arithmetic and more. Indeed, it is equivalent to the existence, for every set X and $n \in \mathbb{N}$, of a β -model of Π_n^1 -comprehension containing X. We prove this by providing a level-by-level analysis of determinacy at the finite level of the difference hierarchy on Π_3^0 sets: For $n \ge 1$, determinacy at the *n*th level lies strictly between the existence of β -models of Π_{n+2}^1 -comprehension containing any given set X and of such models of Δ_{n+2}^1 -comprehension. Thus it lies strictly between Π_{n+2}^1 -comprehension and Δ_{n+2}^1 -comprehension in consistency strength. The major new technical result is a recursion/complexity theoretic one. The *n*th determinacy axiom implies closure under the operation taking a set X to the least Σ_{n+1} admissible containing X (for n = 1, this is due to Welch [2012]). (Received February 04, 2013)