We provide an affirmative answer to a problem posed by Barvinok and Veomett, showing that in general an n-dimensional convex body cannot be approximated by a projection of a section of a simplex of sub-exponential dimension. More precisely, we prove that for all $1 \leq n \leq N$ there exists an n-dimensional convex body B such that for every n-dimensional convex body K obtained as a projection of a section of an N-dimensional simplex one has

$$d(B, K) \geq c \sqrt{\frac{n}{\ln \frac{2N \ln(2N)}{n}}},$$

where $d(\cdot, \cdot)$ denotes the Banach-Mazur distance and c is an absolute positive constant. The result is sharp up to a logarithmic factor. (Received September 01, 2012)