1122-46-175 **David R Pitts*** (dpitts2@unl.edu), Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588. *Unique Pseudo-Expectations and Minimal Norms*. Let $(\mathcal{D}, \Gamma, \alpha)$ be a C^* -dynamical system where Γ is a discrete group and \mathcal{D} is a unital abelian C^* -algebra. Let \mathcal{A} be the twisted convolution algebra of all finitely supported functions from Γ into \mathcal{D} . Generally, there are many C^* -norms on \mathcal{A} : there is always a maximal one, but not a minimal one. But when Γ acts topologically freely, there is a minimal C^* -norm on \mathcal{A} , which follows from Theorem A below. A regular MASA inclusion is a pair $(\mathcal{C}, \mathcal{D})$ of unital C^* -algebras where $\mathcal{D} \subseteq \mathcal{C}$ is a MASA and the set $$\mathcal{N} := \{ v \in \mathcal{C} : v\mathcal{D}v^* \cup v^*\mathcal{D}v \subseteq \mathcal{D} \}$$ has dense span in \mathcal{C} . Let $I(\mathcal{D})$ be the injective envelope for \mathcal{D} . When $(\mathcal{C}, \mathcal{D})$ is a regular MASA inclusion, there is a unique pseudo-expectation $E: \mathcal{C} \to I(\mathcal{D})$. The left kernel of E is the unique ideal \mathcal{L} of \mathcal{D} maximal subject to $\mathcal{D} \cap \mathcal{L} = (0)$. **Theorem A.** If (C, D) is a regular MASA inclusion such that $\mathcal{L} = (0)$ and $\mathcal{A} = \operatorname{span} \mathcal{N}$, there are unique minimal and maximal C^* -norms on \mathcal{A} . (Received August 12, 2016)