In Ramsey Theory one studies the notion of partition regularity (PR): A family \(G \) is PR on \(X \) if for every finite coloring \(X = C_1 \cup \ldots \cup C_r \) there exists a monochromatic \(A \in G \), i.e., \(A \subseteq C_i \) for some \(i \). In this setting, ultrafilters play an instrumental role: A family \(G \) is PR on \(X \) iff there exists an ultrafilter \(U \) on \(X \) such that every element of \(U \) includes some \(A \in G \). By using the nonstandard extension \(^*X \), ultrafilters on \(X \) can be represented as points \(\xi \in ^*X \). I will present a nonstandard technique grounded on that observation, which has been recently used to prove new results about the PR of Diophantine equations. (An equation \(P(x_1, \ldots, x_n) = 0 \) is PR if the set of its solutions \(\{ (a_1, \ldots, a_n) \mid P(a_1, \ldots, a_n) = 0 \} \) is PR.) As examples, I will show that \(X^2 + Y^2 = Z \) and \(X + Y = Z^2 \) are not PR.

In the second part of the talk, I will briefly discuss the (discrete) topological dynamics as given by the hypernatural numbers \(^*\mathbb{N} \) endowed with the shift operator \(S : \xi \mapsto \xi + 1 \), and present an alternative nonstandard proof of van der Waerden’s Theorem: In any finite coloring of the natural numbers there exist monochromatic arithmetic progressions of arbitrary length. (Received January 14, 2019)