Suppose that we are given an infinite binary sequence which is random for a Bernoulli measure of parameter p. By the law of large numbers, the frequency of zeros in the sequence tends to p, and thus we can get better and better approximations of p as we read the sequence. We study in this paper a similar question, but from the viewpoint of inductive inference. We suppose now that p is a computable real, but one asks for more: as we are reading more and more bits of our random sequence, we have to eventually guess the exact parameter p (in the form of a Turing code). Can one do such a thing uniformly on all sequences that are random for computable Bernoulli measures, or even on a ‘large enough’ fraction of them? We give a very general negative answer to this question, though we show that some positive result can be obtained for weaker requirements. (Received January 28, 2019)