1147-05-231
Andrew Suk* (asuk@ucsd.edu), UCSD, La Jolla, CA 92093-0112. On the Erdos-Szekeres convex polygon problem.
The classic 1935 paper of Erdos and Szekeres entitled "A combinatorial problem in geometry" was a starting point of a very rich discipline within combinatorics: Ramsey theory. In that paper, Erdos and Szekeres studied the following geometric problem. For every integer $n \geq 3$, determine the smallest integer $E S(n)$ such that any set of $E S(n)$ points in the plane in general position contains n members in convex position, that is, n points that form the vertex set of a convex polygon. Their main result showed that $E S(n) \leq\binom{ 2 n-4}{n-2}+1=4^{n-o(n)}$. In 1960 , they showed that $E S(n) \geq 2^{n-2}+1$ and conjectured this to be optimal. In this talk, I will sketch a proof showing that $E S(n)=2^{n+o(n)}$. (Received January 12, 2019)

