A graph G is $(a : b)$-colorable if there exists an assignment of b-element subsets of $\{1, \ldots, a\}$ to vertices of G such that sets assigned to adjacent vertices are disjoint. We show that every planar graph without cycles of length 4 or 5 is $(11 : 3)$-colorable, a weakening of recently disproved Steinberg’s conjecture. In particular, each such graph with n vertices has an independent set of size at least $\frac{3}{11}n$. (Received January 26, 2019)