An orientation of the complete graph is called a transitive tournament if it does not contain a directed cycle. In this talk, we will investigate the minimum degree threshold for every orientation of every graph on \(n = mk \) vertices to contain a collection of \(m \) vertex-disjoint copies of the transitive tournament on \(k \) vertices.

As observed by Yuster, for \(k = 3 \), the Hajnal-Szemerédi Theorem implies that \(5n/6 \) is the correct minimum degree threshold. For \(k = 4 \), we will show that the correct asymptotic minimum degree threshold is \(11n/12 \). That is, we will show that for every \(\varepsilon > 0 \) there exists \(n_0 \) such that for every \(n \geq n_0 \) that is divisible by 4 the following holds. If \(G \) is an \(n \)-vertex graph with minimum degree at least \((11/12 + \varepsilon) n \), then every orientation of \(G \) contains a collection of \(n/4 \) vertex-disjoint copies of the transitive tournament on 4 vertices. This minimum degree condition is asymptotically sharp. We will also discuss a number of related conjectures and results. (Received January 28, 2019)