Numerical monoids have proven useful in the study of the Huneke-Wiegand Conjecture. More specifically, when \(\Gamma \) is a numerical monoid and \(\mathbb{K} \) is a field, the monoid algebra \(\mathbb{K}[\Gamma] \) satisfies the Huneke-Wiegand conjecture for 2-generated monomial ideals if a certain irreducible arithmetic sequence of length 2 can be found. Searching for these irreducible arithmetic sequences is facilitated by placing a monoid structure on the set of arithmetic sequences in \(\Gamma \) with step-size \(s \in \mathbb{N} \setminus \Gamma \). Understanding these so-called Leamer monoids has provided much traction in verifying the Huneke-Wiegand conjecture in these special cases. In this talk, we provide a summary of known results, as well as describe a graphical method for finding these arithmetic sequences. (Received January 29, 2019)