1147-13-188Taran Funk and Thomas Marley* (tmarley1@unl.edu), Department of Mathematics, 203
Avery Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0130. Frobenius and homological
dimensions of complexes. Preliminary report.

Let R be a local ring of prime characteristic p and $f: R \to R$ the Frobenius map. For an integer n > 0 let ${}^{n}R$ denote the ring R viewed as an R-algebra via f^{n} . Let M be an R-complex such that $s := \sup H_{*}(M)$ is finite.

We prove the following two results:

Theorem A: Suppose R is Cohen-Macaulay of multiplicity e. If for some $n \ge e$ one has $\operatorname{Tor}_{i}^{R}({}^{n}R, M)=0$ for d consecutive values of i > s, then M has finite flat dimension.

Theorem B: Suppose R is a complete intersection. If $\operatorname{Tor}_{i}^{R}({}^{n}R, M) = 0$ for some n > 0 and some i > s, then M has finite flat dimension.

Theorem A generalizes a result of C. Miller and Theorem B generalizes a result of L. Avramov and C. Miller, both of which were proved in the case M is a finitely generated module. (Received January 08, 2019)