Let \mathcal{M}_g be the moduli space of closed Riemann surfaces of genus $g \geq 2$. The maximal injectivity radius function r_{max} on \mathcal{M}_g is the function which assigns to each surface its maximal injectivity radius. We call a surface in \mathcal{M}_g extremal if it attains the maximum of r_{max}. It is known that there exist 9 extremal surfaces of genus two up to isomorphism. In this talk we give a model of the Teichmüller space \mathcal{T}_2 of genus two in \mathbb{R}^7 by using hyperbolic octagons, and give examples of mapping classes acting on \mathcal{T}_2 in terms of 7 variables. Investigating the images of marked extremal surfaces under these mapping classes, we estimate a bound of distances between extremal surfaces in \mathcal{M}_2. (Received January 26, 2019)